

Making ThermoGraphs for Places in Ecuador

A thermometer graph is a special kind of graph that shows the temperature at a place in every month of the year. To make a thermometer graph, first find a table of data that shows the temperature in every month. Then color the thermometer for that month up to the line that shows the correct temperature.

For example, suppose the temperature for a month is 70 degrees (room temperature). You should color the thermometer up to the 70-degree line. If the temperature is 65 degrees, then you should color up to the space between 60 and 70. If it is 23 degrees, color up to the space between 20 and 30, a little closer to the 20 than the 30.

Here is a table that shows the temperatures at some places we have been studying.

Chicago	Jan	Feb	Mar	Apr	May	June		Aug	Sept	Oct	Nov	Dec	Year
600 feet	23	27	38	50	60	69		72	66	54	41	28	50
Porto Viejo	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Year
150 feet	78	79	79	79	78	76	75	75	75	76	76	77	77
Ospina Perez 5550 feet	Jan 65	Feb 66	Mar 66	Apr 66		June 66		Aug 67	Sept 67	Oct 66	Nov 65	Dec 65	Year 66
Quito 9200 feet	Jan 56	Feb 56	Mar 56	Apr 56	May 56				Sept 56	Oct 55	Nov 55	Dec 56	Year 56
Cotopaxi	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Year
11700 feet	46	46	46	46	46	45	45	45	45	46	46	46	46

Make a thermometer graph to show temperature through the year in each of these cities. Then write three complete comparison sentences to describe how these places are similar or different. One of your sentences should be a generalization about the relationship between temperature and elevation. Here is an example of a simple comparison:

The coldest month in Porto Viejo is warmer than the hottest month in Chicago.

Making ThermoGraphs for Places in Bolivia

A thermometer graph is a special kind of graph that shows the temperature at a place in every month of the year. To make a thermometer graph, first find a table of data that shows the temperature in every month. Then color the thermometer for that month up to the line that shows the correct temperature.

For example, suppose the temperature for a month is 30 degrees (just below freezing). You should color the thermometer up to the 30-degree line. If the temperature is 65 degrees, then you should color up to the space between 60 and 70. If it is 22 degrees, color up to the space between 20 and 30, a little closer to the 20 than the 30.

Here is a table that shows the temperatures at some places we have been studying.

New York City (5000 people in 1700 50 feet above sea level)		Feb 31	Mar 37	Apr 50		June 68	•		•	Oct 60	Nov 44	Dec 35
Puerto Suarez (near Corumba, Brazil 500 feet above sea level)	Jan 84		Mar 82	Apr 80		June 74		-	Sept 81	Oct 84	Nov 85	Dec 85
Santa Cruz (center of oil region 2000 feet above sea level)	Jan 79	Feb 79	Mar 78	Apr 75		June 68	'		Sept 74	Oc† 78	Nov 79	Dec 79
Cochabamba (COACH-a-BAHM-ba, 8000 feet elevation)	Jan 66	. –	Mar 64	Apr 63	May 60	June 56	July 57	Aug 61	Sept 64	Oct 66	Nov 67	Dec 67
Potosi (potoSEE) (silver mining center. 200,000 people in 1700, 13000 feet elevation)	Jan 53		Mar 53	Apr 52		June 48	July 47	Aug 49	Sept 51	Oct 53	Nov 54	Dec 54

Make a thermometer graph to show temperature through the year in each of these cities.

Then write three generalizations (using complete sentences) to describe how these places are similar or different. Here is a way to start each one:

New York City is in the northern hemisphere. Bolivia is in the southern hemisphere. As a result, . . .

As you go higher above sea level, temperatures tend to

New York is much farther from the equator than any city in Bolivia. As a result, New York has

©2013 P Gersmehl Teachers may copy for use in their classrooms. Contact pgersmehl@gmail.com regarding permission for any other use.

Making ThermoGraphs for Places in Chile

A thermometer graph is a special kind of graph that shows the temperature at a place in every month of the year. To make a thermometer graph, first find a table of data that shows the temperature in every month. Then color the thermometer for that month up to the line that shows the correct temperature.

For example, suppose the temperature for a month is 30 degrees (just below freezing). You should color the thermometer up to the 30-degree line. If the temperature is 65 degrees, then you should color up to the space between 60 and 70. If it is 23 degrees, color up to the space between 20 and 30, a little closer to the 20 than the 30.

Here is a table that shows the temperatures at some places we have been studying.

Chicago 42°N	Jan 23	Feb 27	Mar 38	Apr 50	May 60	June 69	•	-	Sept 66	Oct 54	Nov 41	Dec 28
Antofagasta 24°S	Jan 70	Feb 70	Mar 68	•	May 61		July 57	Aug 58	Sept 59	Oct 61	Nov 64	Dec 67
Santiago 33°5	Jan 69	Feb 68		Apr 59	May 53		July 48	Aug 50	Sept 54	Oct 59	Nov 63	Dec 67
Valdivia 40°5	Jan 63			•		June 47		Aug 47	Sept 50	Oct 54	Nov 57	Dec 60
Punta Arenas 53°S	Jan 52	Feb 51	Mar 48	Apr 44		June 37	July 36	Aug 38	Sept 41	Oct 44	Nov 47	Dec 50

Make a thermometer graph to show temperature through the year in each of these cities.

Then write three complete comparison sentences to describe how these places are similar or different. One of your sentences should be a generalization about the relationship between temperature and latitude. Here is an example of a simple comparison:

Every place in Chile has less difference between winter and summer than Chicago.

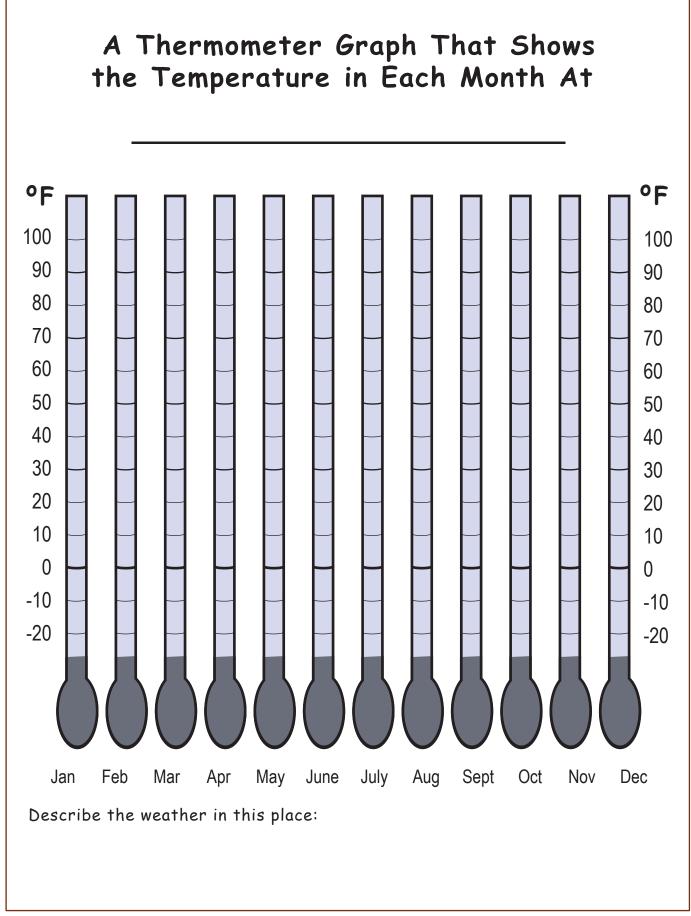
Teacher's Guide: Thermographs in the Andes Region of South America

Overview: students make thermometer graphs (thermographs)		Grade: 5-8			
for several cities in South America (and the US for comparison).	Related Discipline: Math, ELA				
Then they compare the graphs and try to make generalizations about the influence of elevation and latitude on temperature.		GLCE: 6G 211, 311, 312			
		Time: 20-40 minutes			

Preparation: Make plenty of copies of the basic thermograph form; the data pages can be duplicated for groups of students or displayed on a whiteboard or screen. Find broad markers or colored pencils that can be used to fill the thermometer bars efficiently (with the right size marker, an adequate line can be made with a single stroke).

Setup: Temperature is obviously an important consideration in human comfort. You might take advantage of the moment to clarify that the average temperature for a month can hide a lot of daily variation, both from day to day and from afternoon to midnight on a single day.

Procedure: Use any familiar procedure to make students aware that they are responsible for constructing one or two graphs, after which they will compare the graphs and make generalizations that might be applicable anywhere in the world.


Some teachers choose to spread this activity out over several days, doing one country per day (and perhaps doing an additional country or two as an extension, using Wikipedia or worldclimate.com or the Weather Channel as a source of information about additional cities.

Answers: The form of the generalizations may vary, but students should "discover" these ideas:

- 1. All of the cities in this part of South America have less season-to-season variation in temperature than New York or Chicago.
- 2. Places at low elevation near the equator tend to be hot every month of the year.
- 3. Temperatures tend to go down every month as you go higher above sea level in a given region.
- 4. "Winter" comes in June, July, and August in the southern hemisphere.
- 5. As you go away from the equator, average annual temperatures go down, and temperatures in winter months go down faster than in summer months.
- 6. (Optional at this stage, more sophisticated) Temperature differences between winter and summer are a little more extreme for places that are farther inland from the coast in the same general part of the world. Land heats and cools more quickly than water, which is why Omaha and Kansas City have more extreme temperatures than New York and San Francisco.
- **Debrief:** Later, we will turn the thermograph bars into a line and add precipitation bars to the graph. This will give us the classic Climagraph, which is the topic of one of the GLCEs that are an important part of the information we need to know from a geography class. Knowing the general pattern of temperature and precipitation can then help us understand a lot of other geographic patterns, like where certain animals live, crops can grow, diseases occur. This information can also help us understand many other topics, such as construction problems, recreational opportunities, military strategy, and the use of energy in different places.

Vocabulary: temperature season thermograph elevation latitude

Extension: make thermographs for any place, using data from Wikipedia, Worldclimate.com, etc.

